حل عددی دستگاه معادلات انتگرال جبری با استفاده از روش های تصویر

پایان نامه
چکیده

بسیاری از مسائل مهم ریاضی و فیزیک به معادلات انتگرال و دستگاه معادلات انتگرال تبدیل می شوند. هدف این پایان نامه حل عددی دستگاه معادلاتی است، که بصورت زیر در نظر گرفته می شود: ?u(x)=f(x)+?_a^b?k(x,t) u(x)dt u(x)=[u_i (x)] i=1,…,n f(x)=[f_i (x)] i=1,…,n k(x,t)=[k_(i,j) (x,t)] i,j=1,…,n با استفاده از دو روش گسسته سازی معادلات به روش های تصویر با چند جمله ای های لژاندر و روش تجزیه آدومیان، دستگاه ذکر شده مورد بررسی قرار گرفته شده است. همگرایی هر دو روش را با بیان قضیه ها یی اثبات می کنیم.در پایان با چند مثال عددی و ارائه جداول و نمودارهایی،دقت روش ها و تفاوت آنها و نقایص روش تجزیه آدومیان را نشان می دهیم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

حل عددی معادلات دیفرانسیلی- جبری به شکل هزنبرگ با استفاده از کنترل مد لغزشی

در این مقاله روشی برای حل عددی معادلات دیفرانسیلی- جبری به شکل هزنبرگ ارائه شده است. در روش ارائه شده یک سطح لغزشی متناسب با ایندکس سیستم تعریف شده است که معادله‌ی کاملی برای محاسبه‌ی متغیر جبری در اختیار قرار می‌دهد. همچنین به دلیل پایداری سطح لغزشی، همگرایی خطای دوری از خمینه‌ی قید در معادله‌ی دیفرانسیلی- جبری تضمین شده است. در انتها، روش روی چند مثال خطی ایندکس و غیر خطی اعمال شده و نتایج آو...

متن کامل

موجکهای چبیشف برای حل عددی معادلات انتگرال تصادفی ولترا با روش کمترین مربعات

این مقاله با استفاده از موجک چبیشف و روش کمترین مربعات، یک روش تقریبی برای حل معادله انتگرال ایتو-ولتراارائه می دهد. معادله انتگرال ایتو-ولترا با روش کمترین مربعات به وسیله موجک چبیشف به یک دستگاه معادلات خطیتبدیل می شود که آنالیز خطای روش پیشنهادی، ارائه شده و سرعت همگرایی نیز اثبات شده است. همچنین مثال هایعددی میزان دقت و کارآمدی این روش را نسبت به روش ماتریس عملیاتی تصادفی نشان می دهند.

متن کامل

حل عددی معادلات انتگرال همرشتاین غیرخطی با استفاده از پایه لژاندر- برنشتاین

در این مقاله، یک روش عددی برای حل معادلات انتگرال همرشتاین غیرخطی، ارائه شده است. بدین منظور هسته با استفاده از روش تقریب کمترین مربعات و بر حسب پایه لژاندر- برنشتاین تقریب زده شده است. چندجمله ایهای لژاندر متعامدند و این ویژگی دقت تقریب را بهبود می بخشد. همچنین تابع مجهول به وسیله پایه برنشتاین تقریب زده شده است. ویژگی های مفید چند جمله ایهای برنشتاین به ما کمک می کند تا معادله انتگرال همرشتای...

متن کامل

حل عددی معادلات انتگرال-دیفرانسیل فردهلم-ولترای-همرشتاین غیرخطی با استفاده از توابع بسل

در این مقاله، روش هم محلی بر پایه چندجمله ای های بسل را برای حل معادلات انتگرال-دیفرانسیل فردهلم-ولترا-همرشتاین غیرخطی با شرایط آمیخته به کار می بریم. در این روش، معادلات انتگرال- دیفرانسیل فردهلم- ولترای- همرشتاین غیرخطی با به کارگیری چند جمله ای های بسل نوع اول و نقاط گره ای تبدیل به معادله ای ماتریسی می شود. معادله ماتریسی متناظربا یک دستگاه معادلات غیرخطی جبری با ضرایب نامعلوم  بسل  است. نت...

متن کامل

حل معادلات انتگرال فردهلم با استفاده از توابع چندمقیاسی برنشتاین

در این مقاله، روش های عددی کارا برای پیدا کردن جواب معادلات انتگرال فردهلم خطی و غیرخطی نوع دوم بر اساس پایه توابع چند مقیاسی برنشتاین ارائه می شوند. در ابتدا، ویژگی های این توابع که به صورت ترکیب خطی از توابع بلاک پالس بر بازۀ (1، 0] و چندجمله ای های برنشتاین هستند به همراه  ماتریس عملیاتی دوگان آن ها ارائه می شوند. سپس از این ویژگی ها برای تبدیل معادلۀ انتگرال مورد نظر به معادله ای ماتریسی هم...

متن کامل

حل عددی معادلات دیفرانسیلی- جبری به شکل هزنبرگ با استفاده از کنترل مد لغزشی

در این مقاله روشی برای حل عددی معادلات دیفرانسیلی- جبری به شکل هزنبرگ ارائه شده است. در روش ارائه شده یک سطح لغزشی متناسب با ایندکس سیستم تعریف شده است که معادله ی کاملی برای محاسبه ی متغیر جبری در اختیار قرار می دهد. همچنین به دلیل پایداری سطح لغزشی، همگرایی خطای دوری از خمینه ی قید در معادله ی دیفرانسیلی- جبری تضمین شده است. در انتها، روش روی چند مثال خطی ایندکس و غیر خطی اعمال شده و نتایج آو...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023